Abstract
Breast cancer is the second-leading cause of cancer death in women. Breast cells develop into malignant, cancerous lumps, the first signs of breast cancer. Breast cancer can be discovered by the automated diagnostic system when it is still too little to be found by conventional medical methods. Early breast cancers identified with automated screening and diagnosis technologies are generally treatable. This study proposes an enhanced multi-scale deep Convolutional Capsule Neural Network (CapsNet) optimized with Orchard Optimization Algorithm for breast cancer detection. The proposed system consists of preprocessing, feature extraction, segmentation, and classification process. Two input images are taken initially: the Breast Cancer Histopathology Images dataset and the Infrared Thermal Images dataset. The quality of the collected data is improved, and unwanted noises are removed. The features are extracted to segment the image to derive a Region of Interest for effectively segmenting the affected region. Finally, the images are classified as benign/malignant for histopathology images and healthy/cancer for thermal images. The proposed CapsNet is implemented in Python, run for 200 epochs, and compared with existing methods in terms of evaluation metrics. The result shows that the proposed CapsNet attained 99.74 % accuracy, 0.0482 binary entropy loss on the Breast Cancer Histopathology Image dataset and 97 % accuracy, 0.2081 binary entropy loss on the Infrared Thermal Images dataset while incrementing the epochs at each level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.