Abstract

For clustering of an undirected graph, this paper presents an exact algorithm for the maximization of modularity density, a more complicated criterion that overcomes drawbacks of the well-known modularity metric. The problem can be interpreted as the set-partitioning problem, a problem typically solved with an integer linear programming (ILP) formulation. We provide a branch-and-price framework for solving this ILP, i.e., column generation combined with branch-and-bound. Most importantly, we formulate the column generation subproblem to be solved repeatedly as a simpler mixed integer linear programming (MILP) problem. Acceleration techniques called the set-packing relaxation and the multiple-cutting-planes-at-a-time combined with the MILP formulation enable us to optimize the modularity density for famous test instances including ones with over 100 vertices in around four minutes on a PC. Our solution method is deterministic and the computation time is not affected by any stochastic behavior. For one of the instances, column generation at the root node of the branch-and-bound tree provides a fractional upper bound solution and our algorithm finds an integral optimal solution after branching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.