Abstract
Microfuel cells (MFCs) can potentially power emerging technologies that require power sources in the microliter size range. The recent development of a microfluidic mechanism for self-regulated generation of hydrogen has enabled fabrication of MFCs orders of magnitude smaller than previously possible. In this study, we report an order of magnitude enhancement in the power density of a microliter-scale fuel cell incorporating a new microfluidic design. The microfluidic mechanism is part of an on-board hydrogen generator that uses a reaction between a metal hydride, LiAlH 4, and water vapor to generate hydrogen. The hydrogen generated exits the hydride reactor through a porous silicon wall to reach a Nafion-based membrane electrode assembly (MEA). The microfluidic design increased the water vapor release rate to the hydride reactor by one order of magnitude over a previous design. A 9 μL device incorporating the enhanced microfluidic design delivered a power density of 92 W L −1. Details of a parametric study conducted to improve the water vapor release rate of the microfluidic mechanism and performance analysis of the integrated device are presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.