Abstract

Recently, various research fields have begun dealing with massive datasets forseveral functions. The main aim of a feature selection (FS) model is to eliminate noise, repetitive, and unnecessary featuresthat reduce the efficiency of classification. In a limited period, traditional FS models cannot manage massive datasets and filterunnecessary features. It has been discovered from the state-of-the-art literature that metaheuristic algorithms perform better compared to other FS wrapper-based techniques. Common techniques such as the Genetic Algorithm (GA) andParticle Swarm Optimization (PSO) algorithm, however, suffer from slow convergence and local optima problems. Even with new generation algorithms such as Firefly heuristic and Fish Swarm Heuristic, these questions have been shown to overcome. This paper introduces an improved memetic optimization (EMO) algorithm for FS in this perspective by using conditional criteria in large datasets. The proposed EMO algorithm divides the entire dataset into sample blocksandconducts the task of learning in the map steps. The partial result obtained is combined into a final vector of feature weights in the reductionprocess which defines the appropriate collection of characteristics. Finally, the method of grouping based on the support vector machine (SVM) takes place. Within the Spark system, the proposed EMO algorithm is applied and the experimental results claim that it is superior to other approaches. The simulation results show that the maximum AUC values of 0.79 and 0.74 respectively are obtained by the EMO-FS model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.