Abstract

The shape optimization of complex curves is a crucial and intractable technique in computer aided geometric design and widely used in many product design and manufacturing fields involving complex curve modeling. In this paper, an enhanced manta ray foraging optimization (MRFO) algorithm is used to optimize the shape of complex composite cubic generalized Ball (CCG-Ball, for short) curves. Firstly, to solve the problems of shape optimization for Ball curves, we construct a class of new cubic generalized Ball basis, and then present the CCG-Ball curves with multiple shape parameters based on the constructed basis functions. The shapes of the curves can be modified and optimized easily by using the shape parameters. Secondly, the shape optimization of CCG-Ball curves is mathematically an optimization problem that can be efficiently dealt with by swarm intelligence algorithm. In this regard, an enhanced MRFO called WMQIMRFO algorithm, combined with control parameter adjustment, wavelet mutation and quadratic interpolation strategy, is developed to enhance its capability of jumping out of the local minima and improve the calculation accuracy of the native algorithm. Furthermore, the superiority of the WMQIMRFO algorithm is verified by comparing with standard MRFO, other improved MRFO and popular nature-inspired optimization algorithms on the well-known CEC’14 and CEC’17 test suite as well as four engineering optimization problems, respectively. Finally, by minimizing the bending energy of the CCG-Ball curves as the evaluation standard, the shape optimization models of the curves with 1th-order and 2th-order geometric continuity are established, respectively. The WMQIMRFO algorithm is utilized to solve the established models, and the CCG-Ball curves with minimum energy are obtained. Some representative numerical examples illustrate the ability of the proposed WMQIMRFO algorithm in effectively solving the shape optimization problems of complex CCG-Ball curves in terms of precision, robustness, and convergence characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.