Abstract

Fine particulate matter (PM2.5) is one of the major air pollutants and is an important parameter for measuring air quality levels. High concentrations of PM2.5 show its impact on human health, the environment, and climate change. An accurate prediction of fine particulate matter (PM2.5) is significant to air pollution detection, environmental management, human health, and social development. The primary approach is to boost the forecast performance by reducing the error in the deep learning model. So, there is a need to propose an enhanced loss function (ELF) to decrease the error and improve the accurate prediction of daily PM2.5 concentrations. This paper proposes the ELF in CTLSTM (Chi-Square test Long Short Term Memory) to improve the PM2.5 forecast. The ELF in the CTLSTM model gives more accurate results than the standard forecast models and other state-of-the-art deep learning techniques. The proposed ELFCTLSTM reduces the prediction error of by a maximum of 10 to 25 percent than the state-of-the-art deep learning models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.