Abstract

The energy management (EM) solution of the multi-microgrids (MMGs) is a crucial task to provide more flexibility, reliability, and economic benefits. However, the energy management (EM) of the MMGs became a complex and strenuous task with high penetration of renewable energy resources due to the stochastic nature of these resources along with the load fluctuations. In this regard, this paper aims to solve the EM problem of the MMGs with the optimal inclusion of photovoltaic (PV) systems, wind turbines (WTs), and biomass systems. In this regard, this paper proposed an enhanced Jellyfish Search Optimizer (EJSO) for solving the EM of MMGs for the 85-bus MMGS system to minimize the total cost, and the system performance improvement concurrently. The proposed algorithm is based on the Weibull Flight Motion (WFM) and the Fitness Distance Balance (FDB) mechanisms to tackle the stagnation problem of the conventional JSO technique. The performance of the EJSO is tested on standard and CEC 2019 benchmark functions and the obtained results are compared to optimization techniques. As per the obtained results, EJSO is a powerful method for solving the EM compared to other optimization method like Sand Cat Swarm Optimization (SCSO), Dandelion Optimizer (DO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and the standard Jellyfish Search Optimizer (JSO). The obtained results reveal that the EM solution by the suggested EJSO can reduce the cost by 44.75% while the system voltage profile and stability are enhanced by 40.8% and 10.56%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.