Abstract

Artificial bee colony (ABC) algorithm is a popular swarm intelligence based algorithm. Although it has been proven to be competitive to other population-based algorithms, there still exist some problems it cannot solve very well. This paper presents an Enhanced Hybridized Artificial Bee Colony (EHABC) algorithm for optimization problems. The incentive mechanism of EHABC includes enhancing the convergence speed with the information of the global best solution in the onlooker bee phase and enhancing the information exchange between bees by introducing the mutation operator of Genetic Algorithm to ABC in the mutation bee phase. In addition, to enhance the accuracy performance of ABC, the opposition-based learning method is employed to produce the initial population. Experiments are conducted on six standard benchmark functions. The results demonstrate good performance of the enhanced hybridized ABC in solving continuous numerical optimization problems over ABC GABC, HABC and EABC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.