Abstract
Map-matching is a core functionality of pedestrian navigation applications. The localization errors of the global positioning systems (GPSs) in smartphones are one of the most critical factors that limit the large-scale deployment of pedestrian navigation applications, especially in dense urban areas where multiple road segments exist within the range of GPS errors, which can be increased by tall buildings neighboring each other. In this paper, we address two issues of practical importance for map-matching based on the Hidden Markov Model (HMM) in pedestrian navigation systems: large localization error in the initial phase of map-matching and HMM breaks in open field traversals. A heuristic method to determine the probability of initial states of the HMM based on a small number of GPS data received during the short warm-up period is proposed to improve the accuracy of initial map-matching. A simple but highly practical method based on a heuristic evaluation of near-future locations is proposed to prevent the malfunction of the Viterbi algorithm within the area of open fields. The results of field experiments indicate that the enhanced HMM constructed via the proposed methods achieves significantly higher map-matching accuracy compared to that of state of the art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.