Abstract

A stable and highly sensitive gas ionization sensor (GIS) constructed from vertically aligned, conductive yttrium–doped ZnO nanorod (YZO NR) arrays is demonstrated. The conductive YZO NRs are synthesized using a facile one-pot hydrothermal method. At higher Y/Zn molar ratio, the aspect ratio of the YZO NRs is increased from 11 to 25. Doping with yttrium atoms decreases the electrical resistivity of ZnO NRs more than 100 fold. GIS measurements reveal a 6-fold enhancement in the sensitivity accompanied with a significant reduction in breakdown voltage from the highly conductive YZO NRs. Direct correlations between the resistivity of the NRs and GIS characteristics are established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.