Abstract

The cyclostationary analysis techniques have been extensively explored for the purpose of fault detection in rotating machinery. However, there are still huge challenges because of both limited detection frequency range and low fault identification accuracy. This paper proposes an improved cyclostationary method to enhance incipient fault features. Firstly, the continuous wavelet transform is used to accurately locate important frequency bands, and the fault modulation mechanism or fast kurtogram can be adopted to design the optimal wavelet transform scale factor. Secondly, the Teager-Kaiser energy operator is improved to be used in the frequency domain for the weak fault feature enhancement. Finally, fault features are presented in the cyclic frequency domain through spectral coherence and enhanced envelope spectrum. The proposed method is verified through both numerical simulation and experiments, including incipient half-broken rotor bar, and rolling bearing outer race faults in induction motors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call