Abstract

The development of Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) systems in the past decade has led to a remarkable advance in biomedical applications and devices. Particularly, CAM and CAD systems are employed in medical engineering, robotic surgery, clinical medicine, dentistry and other biomedical areas. Hence, the accuracy and precision of the CAD and CAM systems are extremely important for proper treatment. This work suggests a new CAD system for brain image classification by analyzing Magnetic Resonance Images (MRIs) of the brain. Firstly, we use the proposed Downsized Rank Kernel Partial Least Squares (DR-KPLS) as a feature extraction technique. Then, we perform the classification using Support Vector Machines (SVM) and we validate with a k-fold cross validation approach. Further, we utilize the Tabu search metaheuristic approach in order to determine the optimal parameter of the kernel function. The proposed algorithm is entitled DR-KPLS+SVM. The algorithm is tested on the OASIS MRI database. The proposed kernel-based classifier is found to be better performant than the existing methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call