Abstract

Feature selection is an important data processing method to reduce dimension of the raw datasets while preserving the information as much as possible. In this paper, an enhanced version of Black Widow Optimization Algorithm called SDABWO is proposed to solve the feature selection problem. The Black Widow Optimization Algorithm (BWO) is a new population-based meta-heuristic algorithm inspired by the evolution process of spider population. Three main improvements were included into the BWO to overcome the shortcoming of low accuracy, slow convergence speed and being easy to fall into local optima. Firstly, a novel strategy for selecting spouses by calculating the weight of female spiders and the distance between spiders is proposed. By applying the strategy to the original algorithm, it has faster convergence speed and higher accuracy. The second improvement includes the use of mutation operator of differential evolution at mutation phase of BWO which helps the algorithm escape from the local optima. And then, three key parameters are set to adjust adaptively with the increase of iteration times. To confirm and validate the performance of the improved BWO, other 10 algorithms are used to compared with the SDABWO on 25 benchmark functions. The results show that the proposed algorithm enhances the exploitation ability, improves the convergence speed and is more stable when solving optimization problems. Furthermore, the proposed SDABWO algorithm is employed for feature selection. Twelve standard datasets from UCI repository prove that SDABWO-based method has stronger search ability in the search space of feature selection than the other five popular feature selection methods. These results confirm the capability of the proposed method simultaneously improve the classification accuracy while reducing the dimensions of the original datasets. Therefore, SDABWO-based method was found to be one of the most promising for feature selection problem over other approaches that are currently used in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.