Abstract
With the continual growth of population and shortage of energy resources, the optimal consumption of these resources is of particular importance. One of these energy sources is electricity, with a significant amount being used in pumping stations for water distribution systems (WDS). Determining the proper pumping schedule can make significant savings in energy consumption and particularly in costs. This study aims to present an improved population-based nature-inspired optimization algorithmfor pumping scheduling program in WDS. To address this issue, the binary dragonfly algorithm based on a new transfer-function coupled with the EPANET hydraulic simulation model is developed to reduce the energy consumption of pumping stations. The proposed model was firstly implemented and evaluated on a benchmark test example, then on a real water pumping station. Comparison of the proposed method and the genetic algorithm (GA), evolutionary algorithm (EA), ant colony optimization (ACO), artificial bee colony (ABC), particle swarm optimization (PSO), and firefly (FF) was conducted on the benchmark test example, while the obtained results indicate that the proposed framework is more computationally efficient and reliable. The results of the real case study show that while considering all different constraints of the problem, the proposed model can decrease the cost of energy up to 27% in comparison with the current state of operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.