Abstract

The Baillon–Haddad theorem establishes that the gradient of a convex and continuously differentiable function defined in a Hilbert space is \(\beta \)-Lipschitz if and only if it is \(1/\beta \)-cocoercive. In this paper, we extend this theorem to Gâteaux differentiable and lower semicontinuous convex functions defined on an open convex set of a Hilbert space. Finally, we give a characterization of \(C^{1,+}\) convex functions in terms of local cocoercivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.