Abstract

This paper deals with the prediction of the overall behavior of a class of two-phase elasto-viscoplastic composites, based on mean-field homogenization. For this, important improvements are made to the recently-proposed affine formulation. The latter theory linearizes the rate-dependent inelastic constitutive equations of each phase’s material and transforms them into fictitious linear thermo-elastic relations in the Laplace–Carson domain. The main contributions of the present work are threefold. Firstly, complete mathematical developments including a full treatment of internal variables are carried out, enabling the modeling of the response under unloading and cyclic histories. Secondly, robust and accurate computational algorithms are proposed. Thirdly, an extensive validation of the predictions against reference unit cell finite element results is conducted for a variety of materials and loadings. A good agreement between predictions and reference results is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.