Abstract

The distribution of small fractures and water content of the Fourcade glacier on King George Island, Antarctica, was investigated in November 2006 and December 2007 by two ground-based (470- and 490-m-long profiles) and one helicopter-borne (470-m-long profile) ground-penetrating radar (GPR) surveys using 50-, 100-, and 500-MHz antennas. Radar images in the pre-migrated GPR sections are characterized by a smooth ice surface and irregular bed topography, numerous diffraction hyperbolas in the ice and at the glacier bed, strong scattering noise, and near-surface folded layers. Scattering noise above a mound in the center of the profiles is associated with an area of dense fractures extending down from the ice surface that has relatively low reflection strength. Near the northeast ends of the profiles where few englacial fractures occur, scattering noise may result from the presence of warmer ice. A water-filled conduit and an air-filled cavity are interpreted as the source of two distinct hyperbolas in sub-glacial valleys based on the polarity of the reflections. Through migration velocity analysis on 106 hyperbolas, radar velocities were obtained for the 100-MHz ground-based profile. Using the velocities and Paren’s mixture formula, we calculated the water content of the ice to have been in the range of 0.00–0.09. High water content occurs near the glacier margin, in sub-glacial valleys, and in zones of scattering noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call