Abstract

By determination of the rheological flow curve of minute quantities of axoplasm drawn into a microcapillary tube connected to a high vacuum, extruded axoplasm was shown to behave as a pseudoplastic fluid with a viscosity of 10(6)-times that of water and without significant signs of time-dependent thixotropic or viscoelastic properties. A theoretical analysis of peristaltic pumping of such pseudoplastic fluids by sinusoidal surface waves was combined with experimental studies of a mechanical model designed to simulate peristaltic drive. The correlation of the respective data permitted quantitative predictions for the peristaltic mechanism of axonal flow, with speed being a function of peristaltic wave geometry and fluid properties, yielding a theoretical mean value of 0.45 mm/day, i.e., of the same order as that observed in the living nerve fiber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.