Abstract
A nonuniform transmission line approach is adopted in this paper for modeling the transient behavior of different types of grounding systems under lightning strikes in time domain by solving Telegrapher's equations based on finite-difference time-domain (FDTD) technique. Electromagnetic couplings between different parts of the grounding wires are included using effective per-unit length parameters (l, c, and g), which are space and time dependent. The present model can predict both the effective length and the transient voltage of grounding electrodes accurately, while, an uniform transmission line approach with electrode length dependent per-unit length parameters fails to predict the same. Unlike the circuit theory approach , the present model is capable of predicting accurately the surge propagation delay in the large grounding system. The simulation results for buried horizontal wires and grounding grids based on the present model are in good agreement with that of the circuit and electromagnetic field approaches , . From an engineering point of view, the model presented in this paper is sufficiently accurate, time efficient, and easy to apply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.