Abstract

Escherichia coli BA002, the ldhA and pflB deletion strain, cannot utilize glucose in nutrient-rich or minimal media anaerobically. Co-expression of heterologous pyruvate carboxylase and nicotinic acid phosphoribosyltransferase in BA002 resulted in a significant increase in cell mass and succinic acid production. Nevertheless, the resultant strain, BA016, still could not grow in a defined medium without tryptone and yeast extract. To solve the problem, a novel atmospheric and room temperature plasma mutation method was employed to generate mutants which can grow in the defined medium. A mutant designated as LL016 was observed to be the best strain that regained the capacity of cell growth and glucose utilization in a defined medium anaerobically. After 120h of fermentation in the defined medium, 35.0g/L of glucose was consumed to generate 25.2g/L of succinic acid. Furthermore, with the highest glucose consumption rate in the dual-phase fermentation, the yield of succinic acid in LL016 reached 0.87g/g, which was higher than that observed in other strains. From an industrial standpoint, the defined medium is much cheaper than LB medium, which shows a great potential usage for the economical production of succinic acid by LL016.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.