Abstract
BackgroundThe photorespiratory nitrogen cycle in C3 plants involves an extensive diversion of carbon and nitrogen away from the direct pathways of assimilation. The liberated ammonia is re-assimilated, but up to 25% of the carbon may be released into the atmosphere as CO2. Because of the loss of CO2 and high energy costs, there has been considerable interest in attempts to decrease the flux through the cycle in C3 plants. Transgenic tobacco plants were generated that contained the genes gcl and hyi from E. coli encoding glyoxylate carboligase (EC 4.1.1.47) and hydroxypyruvate isomerase (EC 5.3.1.22) respectively, targeted to the peroxisomes. It was presumed that the two enzymes could work together and compete with the aminotransferases that convert glyoxylate to glycine, thus avoiding ammonia production in the photorespiratory nitrogen cycle.ResultsWhen grown in ambient air, but not in elevated CO2, the transgenic tobacco lines had a distinctive phenotype of necrotic lesions on the leaves. Three of the six lines chosen for a detailed study contained single copies of the gcl gene, two contained single copies of both the gcl and hyi genes and one line contained multiple copies of both gcl and hyi genes. The gcl protein was detected in the five transgenic lines containing single copies of the gcl gene but hyi protein was not detected in any of the transgenic lines. The content of soluble amino acids including glycine and serine, was generally increased in the transgenic lines growing in air, when compared to the wild type. The content of soluble sugars, glucose, fructose and sucrose in the shoot was decreased in transgenic lines growing in air, consistent with decreased carbon assimilation.ConclusionsTobacco plants have been generated that produce bacterial glyoxylate carboligase but not hydroxypyruvate isomerase. The transgenic plants exhibit a stress response when exposed to air, suggesting that some glyoxylate is diverted away from conversion to glycine in a deleterious short-circuit of the photorespiratory nitrogen cycle. This diversion in metabolism gave rise to increased concentrations of amino acids, in particular glutamine and asparagine in the leaves and a decrease of soluble sugars.
Highlights
The photorespiratory nitrogen cycle in C3 plants involves an extensive diversion of carbon and nitrogen away from the direct pathways of assimilation
Each original T0 plant was vegetatively propagated by taking stem cuttings and growing them in soil in a glasshouse, where they were heavily shaded from excess light
T1 generations were grown from this seed and homozygous individuals were selected on the basis that when self pollinated the seed produced 100% of progeny (T2) with the distinctive phenotype
Summary
The photorespiratory nitrogen cycle in C3 plants involves an extensive diversion of carbon and nitrogen away from the direct pathways of assimilation. The photorespiratory nitrogen cycle in C3 plants involves a considerable diversion of carbon and nitrogen away from the direct pathways of assimilation [1,2]. The key enzyme responsible for photosynthetic carbon assimilation is ribulose 1,5-bisphosphate carboxylase/ oxygenase (Rubisco) which catalyses the reaction of CO2 with ribulose 1,5-bisphosphate (RuBP) to form two molecules of D-phosphoglyceric acid (PGA). It initiates the photorespiratory nitrogen cycle by catalysing the reaction of oxygen, with RuBP, to form one molecule each of phosphoglycolate and PGA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.