Abstract

PurposeOrgan cultures of rabbit corneas have been used to ascertain the effectiveness of a human fibroblast growth factor (FGF)-1 derivative (TTHX1114), lacking cysteine residues, to protect against and/or repair epithelial lesions following exposure to nitrogen mustard (NM).MethodsRabbit corneas were exposed to NM and cultured for up to 14 days, with or without drug (TTHX1114). At specified times, tissue was examined by histopathology and graded by a novel composite scale. Proliferation was measured by 5-ethynyl-2′-deoxyuridine (EdU) incorporation, and the expression of native FGF-1 and ADAM-17 after NM exposure was determined by immunofluorescence.ResultsRabbit corneas, exposed to a single dose of NM, showed a nearly complete loss of epithelial cells by day 6 but were significantly regenerated by day 14. When treated continuously with TTHX1114 following vesicant exposure, the losses remained at day 2 levels. The loss of keratocytes in the stroma was not affected by TTHX1114. EdU incorporation over the same time course showed a steady increase in tissue that had not been treated with TTHX1114, while corneas that were treated with the drug showed a higher percent incorporation initially, which then decreased, indicating the strong proliferative response to TTHX1114. ADAM-17 was not significantly altered by TTHX1114 treatment. Corneal epithelial FGF-1 disappeared after only 1 day following exposure to NM.ConclusionsTTHX1114 is protective against NM-induced damage of the corneal epithelium, possibly by supplying an NM-resistant source of trophic support and by stimulating regeneration of new epithelial cells. These responses underscore the potential value of TTHX1114 as an anti-vesicant therapeutic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call