Abstract

Background/Aims: Developing engineered dendritic cell (DC)-targeting lentivectors (LVs) have been the target of intense research for their potential to create antigen-directed immunotherapeutics which can be safely administered to patients. In this study, we constructed a DC-directed LV (LVDC-UbHBcAg-LIGHT) as a potential vaccine to induce anti-HBV immune responses. Methods: Specificity of LVDC-UbHBcAg-LIGHT for DCs in vivo was confirmed through live animal imaging studies. The levels of cytokine production in T cells were assessed by flow cytometry. The HBcAg-specific cytotoxic T lymphocyte (CTL) responses and antibody responses induced by direct administration of the LVs were detected by LDH release assay and ELISA respectively. The levels of serum HBsAg and HBV DNA were evaluated by Abbott kits and quantitative PCR respectively. The expression levels of HBsAg and HBcAg in liver tissues of HBV transgenic mice were examined by immunohistochemistry. In addition, molecular mechanism underlying the activation of CD8+ T cells was explored. Results: Live animal imaging studies showed that following subcutaneous administration of LVDC-UbHBcAg-LIGHT, no obvious luminescence signal was detected at the injection site. Immunization with LVDC-UbHBcAg-LIGHT elicited potent T cell responses in HBV transgenic mice evidenced by increased percentages of IFN-γ, TNF-α and GzmB producing CD8+ T cells as well as IFN-γ producing CD4+ T cells, improved HBcAg-specific CTL activities and antibody responses. Additionally, vaccination with LVDC-UbHBcAg-LIGHT efficiently reduced serum HBsAg, HBV DNA levels and the expression of HBsAg and HBcAg in liver tissues of HBV transgenic mice. More importantly, autophagy was induced in the activated CD8+ T cells, and the induced autophagy noticeably promoted the proliferation of T cells and decreased the frequencies of apoptotic CD8+ T cells by selectively degrading ubiquitinated apoptosis and cell cycle-associated protein aggregates. Futhermore, we confirmed the interaction between autophagosomes and ubiquitinated aggregates by confocal microscopy and immunoprecipitation analysis. Conclusions: These results demonstrated that LVDC-UbHBcAg-LIGHT provided a simple method of eliciting effective antiviral immune responses in HBV transgenic mice and might potentially be used as a therapeutic strategy to eradicate HBV with more safety and efficiency. Moreover, our results revealed a direct role of autophagy in promoting the survival and proliferation of activated CD8+ T cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call