Abstract
Complement is an essential humoral component of innate immunity; however, its inappropriate activation leads to pathology. Polymorphisms, mutations, and autoantibodies affecting factor H (FH), a major regulator of the alternative complement pathway, are associated with various diseases, including age-related macular degeneration, atypical hemolytic uremic syndrome, and C3 glomerulopathies. Restoring FH function could be a treatment option for such pathologies. In this article, we report on an engineered FH construct that directly combines the two major functional regions of FH: the N-terminal complement regulatory domains and the C-terminal surface-recognition domains. This minimal-size FH (mini-FH) binds C3b and has complement regulatory functions similar to those of the full-length protein. In addition, we demonstrate that mini-FH binds to the FH ligands C-reactive protein, pentraxin 3, and malondialdehyde epitopes. Mini-FH was functionally active when bound to the extracellular matrix and endothelial cells in vitro, and it inhibited C3 deposition on the cells. Furthermore, mini-FH efficiently inhibited complement-mediated lysis of host-like cells caused by a disease-associated FH mutation or by anti-FH autoantibodies. Therefore, mini-FH could potentially be used as a complement inhibitor targeting host surfaces, as well as to replace compromised FH in diseases associated with FH dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.