Abstract

There is a growing interest for developing organotypic cervical models by using primary cervical cells that are able to reproduce the physiological relevant stromal microenvironment and the distinctive histology of the native cervical epithelium. Here for the first time it is reported the production of an organotypic cervical model featured by a scaffold-free stromal tissue resembling the extracellular matrix (ECM) composition and organization of the native counterpart as well as a completely well-differentiated epithelium. To reach this aim, human cervical microtissue precursors have been produced, characterized, and used as functional building units to fabricate a cell-synthesized cervical stroma equivalent by means of a bottom-up approach. Immunotypization, and molecular and morphological analyses reveal the extent of fundamental epithelial biomarkers and the presence of collagen and noncollagenous molecules, demonstrating that the natural tissue architecture and biological characteristics of cervical tissues are reproduced. The results of this study suggest that the bottom-up technology used to produce these 3D human cervical equivalents provides a fully functional organotypic cervical model that may be used as a valuable tool to investigate the epithelial-stromal interactions as well as for testing new therapeutics in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.