Abstract

Varieties of energy-stable numerical methods have been developed for incompressible two-phase flows based on the Navier-Stokes–Cahn–Hilliard (NSCH) model in the Eulerian framework, while few investigations have been made in the Lagrangian framework. Smoothed particle hydrodynamics (SPH) is a popular mesh-free Lagrangian method for solving complex fluid flows. In this paper, we present a pioneering study on the energy-stable SPH discretization of the NSCH model for incompressible two-phase flows. We prove that this SPH method inherits mass and momentum conservation and the energy dissipation properties at the fully discrete level. With the projection procedure to decouple the momentum and continuity equations, the numerical scheme meets the divergence-free condition. Some numerical experiments are carried out to show the performance of the proposed energy-stable SPH method for solving the two-phase NSCH model. The inheritance of mass and momentum conservation and the energy dissipation properties are verified numerically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.