Abstract

In this paper we discuss the estimation of the domain of attraction of equilibria in power systems and propose a new passivity-based controller design methodology for excitation control of synchronous generators. The methodology goes beyond the widely popular damping injection ( L g V) schemes, to actually shape the total energy function via modification of the energy transfer between the mechanical and electrical components of the system. Applying the procedure it is shown that a, properly tuned, linear state feedback enlarges both the estimates and the actual domain of attraction, thus increasing critical clearing time for faults. This is illustrated in two case studies, including a benchmark comparison with the classical control scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.