Abstract

The Square Kilometre Array (SKA) will be the biggest radio telescope ever built, with unprecedented sensitivity, angular resolution, and survey speed. This paper explores the design of a custom architecture for the central signal processor (CSP) of the SKA1-Low, the SKA's aperture-array instrument consisting of 131,072 antennas. The SKA1-Low's antennas receive signals between 50 and 350 MHz. After digitization and preliminary processing, samples are moved to the CSP for further processing. In this work, we describe the challenges in building the CSP, and present a first quantitative study for the implementation of a custom hardware architecture for processing the main CSP algorithms. By taking advantage of emerging 3D-stacked-memory devices and by exploring the design space for a 14-nm implementation, we estimate a power consumption of 14.4 W for processing all channels of a sub-band and an energy efficiency at application level of up to 208 GFLOPS/W for our architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.