Abstract

A multicurrent contour, average-energy-based, substrate current model for silicon submicrometer NMOSFETs is presented as a significant improvement to the local-field model that is commonly used in modern drift-diffusion device simulators. The model is implemented as a post-processor by applying a one-dimensional energy conservation equation to many current contours in order to generate a two-dimensional representation of average energy and impact ionization rate which is integrated to calculate the substrate current. Comparisons of simulations and experimental I-V curves for both simple and LDD MOSFETs are presented. Outstanding agreement has been obtained over a wide range of bias conditions and channel lengths.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.