Abstract

We introduce a stable method for solving the incompressible Navier–Stokes equations with variable density and viscosity. Our method is stable in the sense that it does not increase the total energy of dynamics that is the sum of kinetic energy and potential energy. Instead of velocity, a new state variable is taken so that the kinetic energy is formulated by the L2 norm of the new variable. Navier–Stokes equations are rephrased with respect to the new variable, and a stable time discretization for the rephrased equations is presented.Taking into consideration the incompressibility in the Marker-And-Cell (MAC) grid, we present a modified Lax–Friedrich method that is L2 stable. Utilizing the discrete integration-by-parts in MAC grid and the modified Lax–Friedrich method, the time discretization is fully discretized. An explicit CFL condition for the stability of the full discretization is given and mathematically proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.