Abstract
In this paper, a time-domain discontinuous Galerkin (TDdG) finite element method for the full system of Maxwell’s equations in optics and photonics is investigated, including a complete proof of a semi-discrete error estimate. The new capabilities of methods of this type are to efficiently model linear and nonlinear effects, for example of Kerr nonlinearities. Energy stable discretizations both at the semi-discrete and the fully discrete levels are presented. In particular, the proposed semi-discrete scheme is optimally convergent in the spatial variable on Cartesian meshes with Qk-type elements, and the fully discrete scheme is conditionally stable with respect to a specially defined nonlinear electromagnetic energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.