Abstract

We present an unconditionally energy stable finite-difference scheme for the phase field crystal equation. The method is based on a convex splitting of a discrete energy and is semi-implicit. The equation at the implicit time level is nonlinear but represents the gradient of a strictly convex function and is thus uniquely solvable, regardless of time step size. We present local-in-time error estimates that ensure the convergence of the scheme. While this paper is primarily concerned with the phase field crystal equation, most of the theoretical results hold for the related Swift–Hohenberg equation as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.