Abstract

Deploying distributed renewable energy at the demand side is an important measure to implement a sustainable society. However, the massive small solar and wind generation units are beyond the control of a central operator. To encourage users to participate in energy management and reduce the dependence on dispatchable resources, a peer-to-peer energy sharing scheme is proposed which releases the flexibility at the demand side. Every user makes decision individually considering only local constraints; the microgrid operator announces the sharing prices subjective to the coupling constraints without knowing users' local constraints. This can help protect privacy. We prove that the proposed mechanism can achieve the same disutility and flexibility as centralized dispatch, and develop an effective modified best-response based algorithm for reaching the market equilibrium. The concept of “absorbable region” is presented to measure the operating flexibility under the proposed energy sharing mechanism. A linear programming based polyhedral projection algorithm is developed to compute that region. Case studies validate the theoretical results and show that the proposed method is scalable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.