Abstract

The moth-flame optimization algorithm (MFO) is a novel metaheuristic algorithm for simulating the lateral positioning and navigation mechanism of moths in nature, and it has been successfully applied to various optimization problems. This paper segments the flame energy of MFO by introducing the energy factor from the Harris hawks optimization algorithm, and different updating methods are adopted for moths with different flame-detection abilities to enhance the exploration ability of MFO. A new energy-segmented moth-flame optimization algorithm (ESMFO) is proposed and is applied on 21 benchmark functions and an engineering design problem. The experimental results show that the ESMFO yields very promising results due to its enhanced exploration, exploitation, and convergence capabilities, as well as its effective avoidance of local optima, and achieves better performance than other the state-of-the-art metaheuristic algorithms in terms of the performance measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.