Abstract

Due to the low-inertia and significant renewable generation variability in isolated microgrids, short time-scale fluctuations in the order of seconds can have a large impact on a microgrid’s frequency regulation performance. In this context, the present paper presents a mathematical model for an Energy Management System (EMS) that takes into account the operational impact of the short-term fluctuations stemming from renewable generation rapid changes, and the role that renewable curtailment and batteries, including their degradation, can play to counter-balance these variations. Computational experiments on the real Kasabonika Lake First Nation microgrid and CIGRE benchmark test system show the operational benefits of the proposed EMS, highlighting the need to properly model short-term fluctuations and battery degradation in EMS for isolated microgrids with significant renewable integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.