Abstract

The multiple uncertainties in a microgrid, such as limited photovoltaic generations, ups and downs in the market price, and controlling different loads, are challenging points in managing campus energy with multiple microgrid systems and are a hot topic of research in the current era. Microgrids deployed at multiple campuses can be successfully operated with an exemplary energy management system (EMS) to address these challenges, offering several solutions to minimize the greenhouse gas (GHG) emissions, maintenance costs, and peak load demands of the microgrid infrastructure. This literature survey presents a comparative analysis of multiple campus microgrids’ energy management at different universities in different locations, and it also studies different approaches to managing their peak demand and achieving the maximum output power for campus microgrids. In this paper, the analysis is also focused on managing and addressing the uncertain nature of renewable energies, considering the storage technologies implemented on various campuses. A comparative analysis was also considered for the energy management of campus microgrids, which were investigated with multiple optimization techniques, simulation tools, and different types of energy storage technologies. Finally, the challenges for future research are highlighted, considering campus microgrids’ importance globally. Moreover, this paper is expected to open innovative paths in the future for new researchers working in the domain of campus microgrids.

Highlights

  • Over the years, the surge in demand for electricity has directly led to reducing reserves of fossil fuels such as petroleum, natural gas, and coal

  • This paper studied the research challenges which are essential in optimizing microgrid structures, which help in their planning, control, and operation

  • Developing the system more sustainably requires an effort to maintain an efficient framework for sustainable campus microgrids

Read more

Summary

Introduction

The surge in demand for electricity has directly led to reducing reserves of fossil fuels such as petroleum, natural gas, and coal. This affects the environment through the direct increase in greenhouse gas (GHG) emissions. Microgrids provide an opportunity to offer a solution to reduce greenhouse gas emissions while providing reliable power to fulfill the load demand. Microgrids are a scattered group of power sources and electrical loads that are usually synchronous with the primary grid, called the utility grid [2]. Residential electrical energy sources strongly assist microgrids, and the distribution of Energies 2021, 14, 6525 sources and electrical loads that are usually synchronous with the primary grid, called the utility grid [2]. Ianndth. eInutthileituytiglirtiydgorirdgorridg-rciodn-cnoenc-ted mnoedctee,damncoidllea,raynsceilrlvariycesseravrieceosffaerreeodffienresducinhsaucshceansacreinoa, rcioon, csoidnesridinegrinthgethteratdraidnigngacatciv- ity bteitvwiteyebnetthweeuentiltihtye auntdilithyeamndictrhoegrmidic[r4o]g. rMidic[r4o].grMidicsrpogrorivdids epraopvriodpeoasiptiroonpowsitihonreswpiethct to exretsrepmecet teovenxttrseamnedenvaetnutsraalnhdaznartudrsasluhcahzaarsdesasruthchquaaskeeasr,thflqouoadkse,sh, uflroroidcas,nhesu,rtroicrannaeds,oes, sttoorrmnasd, oeetcs.,,swtoirtmh sth, eetacd., vwainthtatghees athdavtatnhtaegyeusttihliaztetthheeylautteilsitzetetchhenloaltoegstietsecahnndotleocghiensiqauneds to otveecrhcnoimqueetshteosoyvsetercmo’ms edathileyscyhsatellmen’sgdesa,ilsyucchhaallsetnhgeesn,eseudchfoarsptohwe enreeind afonrepmoewregrenincyan[5]. emeIrngsetnitcuyti[o5n].al campuses or universities typically fulfill the main requirements to convert their eInnesrtigtyutsiounpapllycaimntpoucsaems opruusnmiviecrrosigtireids sty. pTihceailrlyofpuelrfialtlitohnesmaraeinmroenqiutiorreemdefnrotsmtoaccoenn-tral covnertrtothlleeirr, aesneshrgoywsnupinpFlyigiunrtoe 1ca, mtopmuasnmaigcerothgreidlosa. dTshaenirdogpeenraetriaotniosnaruenmitsonfoitroervederfyrocmamapus bcueinldtrianlgc[o6n]t.roInlleFr,igausrseh1o,wmnuilntipFilgeusroeu1r,cetos amraencaognentehceteldoatdos tahnedelgeecnterircaatilognriudniitns wfohrich theeveproywcaemr epluesctbrounilidcisnignt[e6r].faInceFriegcuerieve1s, mthueltpipolwe esroufrrocmes tahree mcoincnroegctreidd ptoowtheeredleicsttrriicbaul tor agnrdidcionnwvherictsh tthheeppoowwererelteoctrtohneicvsoilnttaegrefacaenrdecferievqeusethnecyporweqeur firreodm. thTehme imcroaginridropleowoefrthe (crrfcEueeuudomranasneSngrfririoqsueseSrrcetotueeuwltshprtuinns)reiieor.baycprtstonecbusC,clssveestsultouueaiesord(trbmr,mrrOherevjevreesansaedpFeeonctnneyytsu(utiiadreE)nvsrgp,srpwSceceuaytmaaeShoanrpfispssbnevinud)ecoetlve.sncherrruymteuoCcaaferwrtgrtoalcpntoirlosraemraedaeeinrsstdnrpdmeeph,sgteltsdueoiiyuor(snnansOeulpssgawrtmoroFtimevnpavtauwsaaaelreils)rlnrceecl,eyeciyrvhtdraodecoopzinns-uatgeeosa,oidamsrwiqpndndditcduemepheaviearmsfedeluamofymsfersaavdo.zbirprnaoormeeDaeeundlulsmntidiisae-nrsafctseiefugdggrfcietsvfoldeeayr,teotimgmieepeeriapnnnrewcnemeplinhctetsddneulhatntusdcotysnfeit.adrefq(pyamebDosuicgpeqn,apaeSespeiusgmtsnmMsueoie.cmcdsnfopeDl)ou,cnfsmuionizyodatfcsnviafnli(acreunemDtdemrrtintgohqoeSiietpgoneunccMinurnrootiiotore)nsnsdtee,prgyvacsdagamtprl.herin.yimeeniednTdcsnstisprihitqezeoooorewnaurgfnorgtemeraiavsiyrtiosolgidhga,dnleerisyuoennemsttbsdwseeiyroutojrcooeisigunlhtnlctrthyerse--itcptimhvelseees, SMART MICROGRID MICROGRID POWER DISTRIBUTOR POWER ELECTRONICS INTERFACE

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call