Abstract

Recently, direct current (DC) microgrids have gained more attention over alternating current (AC) microgrids due to the increasing use of DC power sources, energy storage systems and DC loads. However, efficient management of these microgrids and their seamless integration within smart and energy efficient buildings are required. This paper introduces an energy management strategy for a DC microgrid, which is composed of a photovoltaic module as the main source, an energy storage system (battery) and a critical DC load. The designed MG includes a DC-DC boost converter to allow the PV module to operate in MPPT (Maximum Power Point Tracking) mode or in LPM (Limited Power Mode). Furthermore, the system uses a DC-DC bidirectional converter in order to interface the battery with the DC bus. The proposed control strategy manages the power flow among different components of the microgrid. It takes the battery lifetime into consideration by applying constraints to its charging/discharging currents and state-of-charge (SoC). The proposed system is simple and efficient in supplying DC loads, since as it’s not using complex algorithms either for MPPT or for energy management. The studied DC microgrid is designed and modeled using Matlab/Simulink software. The load demand is satisfied while ensuring good performance and stability of the system. The controller design, analysis, and simulation validation results are presented and discussed under various operating modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.