Abstract

Using multi-input converters (MICs) in hybrid energy storage systems (HESSs) presents several advantages, such as low component count, control simplicity, and fully control of source energies. The power levels of sources in these systems need to be determined wisely by an energy management strategy (EMS). This paper presents an EMS for a battery/ultracapacitor (UC) HESS including a bidirectional MIC for electric vehicles (EVs). Thanks to the fact that energy flow between battery and UC is free in this MIC, the proposed EMS not only regulates the state-of-charge of UC but also smooths the battery power profile by using a fuzzy logic controller and a rate limiter. Therefore, it results in a sustainable HESS with longer battery life. Through a simulation study and an experimental setup including a real EV, the performance of the proposed system is evaluated comprehensively. Then, based on experimental results, battery cycle-life improvement due to the battery/UC hybridization is explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.