Abstract

Oil depletion, global warming and CO2 gas emissions have become a concern and have motivated the development of an efficient and extendable energy management system (EMS) using renewable energy sources for light vehicles. In this paper, a state-based logic control algorithm is developed for a multi-source EMS for light electric vehicle, i.e., electric scooters. The multiple sources of energy, such as a battery, fuel cell (FC), and super-capacitor (SC), EMS and power controller are designed and modeled using MATLAB. The developed control strategies continuously support the EMS of the multiple sources of energy for a scooter under normal load conditions. The performance of the proposed system is analyzed and compared with that of the ECE-47 test drive cycle in terms of vehicle speed and load power. The results show that the designed vehicle’s speed and load power closely match those of the ECE-47 test driving cycle under normal conditions. This study results suggest that the proposed control algorithm provides an efficient and feasible EMS for light electric vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call