Abstract
In energy harvesting communication systems, the transmitter is adapted to harvest energy per time slot. The harvested energy is either used right away or is stored in a battery to facilitate future transmissions. We consider the problem of determining the Shannon capacity of an energy harvesting transmitter communicating over an additive white Gaussian noise (AWGN) channel, where the amount of energy harvested per time slot is a constant ρ and the battery has capacity σ. This imposes a new kind of power constraint on the transmitted codewords, and we call the resulting constrained channel a (σ, ρ) power constrained AWGN channel. When σ is 0 or ∞, the capacity of this channel is known. For the finite battery case, we obtain an expression for the channel capacity. We obtain bounds on capacity by considering the volume of S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sub> (σ, ρ) ⊆ ℝ <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> , which is the set of all length n sequences satisfying the (σ, ρ) constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.