Abstract

Real-time safety-critical systems are getting more complicated due to the introduction of mixed-criticality systems. The increasing use of mixed-criticality systems has motivated the real-time systems research community to investigate various non-functional aspects of these systems. Energy consumption minimization is one such aspect which is just beginning to be explored. In this paper, we propose a time-triggered dynamic voltage and frequency scaling (DVFS) algorithm for uniprocessor mixed-criticality systems. We show that our algorithm outperforms the predominant existing algorithm which uses DVFS for mixed-criticality systems with respect to minimization of energy consumption. In addition, ours is the first energy-efficient time-triggered algorithm for mixed-criticality systems. We prove an optimality result for the proposed algorithm with respect to energy consumption. Then we extend our algorithm for tasks with dependency constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.