Abstract
The area of three-dimensional (3D) underwater wireless sensor networks (UWSNs) has attracted significant attention recently due to its applications in detecting and observing phenomena that cannot be adequately observed by means of two-dimensional UWSNs. However, designing routing protocols for 3D UWSNs is a challenging task due to stringent constraints imposed by acoustic communications and high energy consumption in acoustic modems. In this paper, we present an ultrasonic frog calling algorithm (UFCA) that aims to achieve energy-efficient routing under harsh underwater conditions of UWSNs. In UFCA, the process of selecting relay nodes to forward the data packet is similar to that of calling behavior of ultrasonic frog for mating. We define the gravity function to represent the attractiveness from one sensor node to another. In order to save energy, different sensor nodes adopt different transmission radius and the values can be tuned dynamically according to their residual energy. Moreover, the sensor nodes that own less energy or locate in worse places choose to enter sleep mode for the purpose of saving energy. Simulation results show the performance improvement in metrics of packet delivery ratio, energy consumption, throughput, and end-to-end delay as compared to existing state-of-the-art routing protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Distributed Sensor Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.