Abstract

Demand Side Management (DSM) mechanism is used for the implementation of different strategies to encourage residential users to reduce electricity bill as well as energy demand. There is also a close relationship between the consumer and utility for equally benefiting to both in terms of grid stability and bill reduction. Extensive research is undertaken now a days in order to make practical implementation on the possible use of different DSM strategies to regulate the energy demand and carbon emission reduction in the World. The major objective of this work is to study the DSM-based approaches which could be helpful in achieving significant electricity demand reduction at the electricity distribution network which is directly connected to the commercial and residential sector especially. In this work, we use an optimization algorithm to obtain the optimal solution for residential electricity load management in a typical household setting. There are two major tasks of this algorithms, firstly, electricity bill minimization of residential user in time of use pricing models, secondly, peaks reduction of demand curve (peak shaving) which will eventually minimize the investment cost of utility including, peak power plants, and transmission lines. Three types of smart appliances are considered, without delay, delay of one hour, delay of five hours. To validate the effectiveness of the proposed algorithm, mathematical models of appliances based on their length of operation time is developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call