Abstract

Routing plays an important role in the overall architecture of the Internet of Things. IETF has standardized the RPL routing protocol to provide the interoperability for low-power and lossy networks (LLNs). LLNs cover a wide scope of applications, such as building automation, industrial control, healthcare, and so on. LLNs applications require reliable and energy-efficient routing support. Point-to-point (P2P) communication is a fundamental requirement of many LLNs applications. However, traditional routing protocols usually propagate throughout the whole network to discover a reliable P2P route, which requires large amount energy consumption. Again, it is challenging to achieve both reliability and energy-efficiency simultaneously, especially for LLNs. In this paper, we propose a novel energy-efficient region-based routing protocol (ER-RPL), which achieves energy-efficient data delivery without compromising reliability. In contrast of traditional routing protocols where all nodes are required for route discovery, the proposed scheme only requires a subset of nodes to do the job, which is the key of energy saving. Our theoretical analysis and extensive simulation studies demonstrate that ER-RPL has a great performance superiority over two conventional benchmark protocols, i.e., RPL and P2P-RPL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.