Abstract

In spintronic-based neuromorphic computing systems (NCS), the switching of magnetic moment in a magnetic tunnel junction (MTJ) is used to mimic neuron firing. However, the stochastic switching behavior of the MTJ and process variations effect leads to extra stimulation time. This leads to extra energy consumption and delay of such NCSs. In this paper, a new real-time sensing (RTS) circuit is proposed to track the MTJ state and terminate stimulation phase immediately after MTJ switching. This leads to significant degradation in energy consumption and delay of NCS. The simulation results using a 65-nm CMOS technology and a 40-nm MTJ technology confirm that the energy consumption of a RTS-based NCS is improved by 50% in comparison with a typical NCS. Moreover, utilizing RTS circuit improves the overall speed of an NCS by 2.75x.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.