Abstract
A real-time and energy-efficient multi-scale object detector hardware implementation is presented in this paper. Detection is done using Histogram of Oriented Gradients (HOG) features and Support Vector Machine (SVM) classification. Multi-scale detection is essential for robust and practical applications to detect objects of different sizes. Parallel detectors with balanced workload are used to increase the throughput, enabling voltage scaling and energy consumption reduction. Image pre-processing is also introduced to further reduce power and area costs of the image scales generation. This design can operate on high definition 1080HD video at 60 fps in real-time with a clock rate of 270 MHz, and consumes 45.3 mW (0.36 nJ/pixel) based on post-layout simulations. The ASIC has an area of 490 kgates and 0.538 Mbit on-chip memory in a 45 nm SOI CMOS process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.