Abstract

This work presents an energy-efficient ECG processor designed for Cardiac Arrhythmia Classification. The processor integrates a pre-processing and neural network accelerator, achieved through algorithm-hardware co-design to optimize hardware resources. We propose a lightweight two-stage neural network architecture, where the first stage includes discrete wavelet transformation and an ultra-low-parameter multilayer perceptron (MLP) network, and the second stage utilizes group convolution and channel shuffle. Both stages leverage neural networks for hardware resource reuse and feature a reconfigurable processing element array and memory blocks adapted to the proposed two-stage structure to efficiently handle various convolution and MLP layers operations in the two-stage network. Additionally, an optimized power-of-two (OPOT) quantization technique is proposed to enhance accuracy in low-bit quantization, and a multiplier-less processing element structure tailored for the OPOT weight quantization is introduced. The ECG processor was implemented on a 65nm CMOS process technology with 4KB of SRAM memory, achieving an energy consumption per interference of 0.15 uJ with a power supply of 1V, 64% energy saving compared to the recent state-of-the-art work. Under 4-bit weight precision, the 5-class ECG signal classification accuracy reached 98.59% on the MIT-BIH arrhythmia dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call