Abstract
In wireless sensor networks, a significant amount of energy is consumed by the sensor nodes during data packet transmission and reception. An IEEE 802.15.4 MAC protocol is not able to completely satisfy all the requirements of wireless body sensor networks (BSNs) in a healthcare environment. Hence there is a demand for the design of a new scalable and energy saving MAC protocols. In this paper the challenging healthcare requirements are considered and based upon these requirements, an energy efficient distributed queuing random access (EE-DQRA) MAC protocol is proposed for BSN scenarios which utilizes the concept of distributed queuing for enhanced radio channel utilization. The theoretical analysis of energy efficient EE-DQRA MAC protocol is being carried out systematically considering the limitations of IEEE 802.15.4 and DQ-MAC protocol. Further, EE-DQRA performance is validated with IEEE 802.15.4 system parameters using computer simulations. The effect of relative traffic load and payload length on the energy consumption, delay and throughput are also analyzed. The simulation results shows that the proposed EE-DQRA MAC with M/M/K queuing has better energy performance than the existing DQ-MAC and IEEE 802.15.4 MAC in BSN scenarios due to collisionless transmission in the data transmission queuing (DTQ) module while keeping the control packet overhead smaller in collision resolution queuing (CRQ) module. It is also evident that EE-DQRA requires a minimum delay in comparison to IEEE802.15.4 and DQ-MAC, due to overhead minimization and M/M/K queuing utilization in DTQ system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.