Abstract

Abstract Producing materials causes about 25% of all anthropogenic CO2 emissions. Metals play a significant role, steel and aluminum account for 24% and 3% of worldwide material related emissions respectively. Fostering resources efficiency strategies in the field of sheet components could lead to a significant environmental impact reduction. Reshaping could be one of the most efficient strategy to foster material reuse and lower the environmental impact due to material production. Specifically, for aluminum recycling, the overall energy efficiency of conventional route is very low and, more importantly, permanent material losses occur during re-melting because of oxidation. The present paper aims at presenting the technical feasibility of Single Point Incremental Forming (SPIF)-based reshaping approach. Change in shape of aluminum stamped part is obtained through SPIF process implementation. Preliminary energy savings quantification through life cycle energy and material flows modelling are provided, energy efficiency of conventional recycling approach and SPIF-based reshaping routes are analyzed and compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.