Abstract

An energy-based fatigue-life prediction framework for the determination of full-life, remaining-life, and critical-life of in-service structures subjected to torsional-shear loading has been developed. This framework is developed upon the existing foundation of energy-based fatigue models crafted for the axial, uniaxial bending, and transverse-shear loading cases, which state: the total strain energy density accumulated during both a monotonic event and a cumulative cyclic process is the same material property. The modified energy-based torsional-shear fatigue-life prediction framework is composed of the following entities: (1) the development of a torsional-shear fatigue testing procedure capable of assessing strain energy density per cycle in a pure shear stress state and (2) the determination of the remaining-life and critical-life of in-service aluminum (Al) 6061-T6 structures subjected to shear fatigue through the application of the energy-based prediction method. Experimental data was shown to be affected by load-frame misalignment which was estimated and successfully incorporated into the validation results. Close correlation between adjusted experimental results and the full-life and critical-life predictions stemmed from a 3-to-2 shear-to-axial biaxial loading assumption, which was supported by crack path comparisons. Results of the study effectively demonstrated the versatility of the energy-based lifing method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call